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Introduction 
The gantry crane system is an apparatus composed of a crane with a free-swinging pendulum attached. 
The crane moves freely along a track parallel to the ground and is driven by a DC motor via a set of 
pulleys and a screw shaft. The system is similar to cranes that maneuver shipping containers. When 
moving the shipping containers, there should be very little sway of the container, because this could 
affect the contents of the container and pose a safety hazard. There are systems in place that help reduce 
the sway of the containers while also maneuvering them at an efficient pace.  
 
The goal of this experiment is to develop a transfer function to allow a control design team to design a 
controller that minimizes the sway of the load. By shifting the crane at the right time at the right speed, 
the pendulum oscillation may be counteracted and dampened. We achieve this goal by creating a 
mathematical model that simulates the position of the pendulum over time.  

Apparatus 
The experimental setup is shown in figure 6. The system consists of several different subsystems. The 
overall system starts with a controller that outputs a voltage through leads to a DC motor. The voltage 
causes the DC motor to spin, which then spins the drive gears. This causes the bottom pully to spin. The 3 
identical pulleys are connected by belts linking their rotations together. The rotation of the top pulley 
drives the rotation of the lead screw which moves along a fixed horizontal bar. As the lead screw moves 
horizontally, it moves a crane fixed to a different horizontal bar. The crane slides along this bar on 
wheels. There is a pendulum attached to the crane that swings freely with a load attached near the 
bottom.  

 

Figure 1: Crane and load system with drive apparatus, front (left) and side (right) 
view. 

 



Model 
For the first system, we model the motor as a resistor, an inductor and a back emf voltage source as seen 
in figure 2. 

 
The first equation of our model relates the voltage at the positive terminal of the motor to the current 
through the motor. When we apply Kirchhoff’s voltage law, we produce the equation  
 

 𝐿
𝑑𝑖
𝑑𝑡
+ 𝑅𝑖 + 𝑒! = 𝑒" , (1) 

 

which compares an input voltage 𝑒! to the output current over time "#
"$

. Next, we describe the voltage 

source 𝑒%, also known as a back emf. The back emf is produced as a result of the angular velocity of the 
motor and an emissivity constant 𝐾&, and is described as 
 

 𝑒! = 𝐾#θ̇$% . (2) 

 
With the input voltage and current relation established we now form the equation 
 

 𝑇& = 𝐾'𝑖. (3) 

 
This equation relates the torque of the motor to the current through the motor and a torque constant 𝐾'.  
 
For the second system we take the bottom pulley attached to motor as seen in figure 2.  

Figure 2: Modeling a DC motor with resistance and inductance 
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We relate the acceleration of the motor and first pulley to the torque produced by the motor as well as the 
tension in the first drive belt. This produces the equation  

 

 (𝐽( + 𝐽$%)θ̈() = 𝑇& + 𝑟()Δ𝑇!#*+), (4) 

 
where we combine the two tensions acting on the pulley into Δ𝑇%&*$+ to reduce the number of dependent 
variables. With the motion of the motor and by extension, first pulley described, we now relate the 
rotation of the first pulley to the second pulley. By relating the angular displacement to a linear 
displacement via the radius of the pulley and assuming there is no slip, we produce the equation 

 

 θ(, = θ()
-!"
-!#_"

. (5) 

 
Next, we move to the second pulley in the middle as seen in figure 4 for our system.   

 
 
 

Figure 3: Kinetic and free body diagrams of the motor and pulley 1 
 

Figure 4: Kinetic and free body diagrams for pulley 2 
 



This uses the same base equation as equation 4, relating the kinetic and free body diagrams. We have 
already produced the angular acceleration from equation 5 and the tension in belt 1 from equation 4, 
which allows us to solve for the tension in belt 2. 
 

 𝐽(θ̈(, = −𝑟(,_)Δ𝑇!#*+) + 𝑟(,_,Δ𝑇!#*+, (6) 

 
We then use the top pulley as our system, as seen in figure 5.  

 
 
 
 
We relate the motion of the middle pulley to that of the top pulley. This is done via the same method as 
equation 5, converting the angular displacement of each pulley to a linear displacement. This produces 
the equation 
 

 θ(, = θ(/
-!%
-!#_#

. (7) 

 
This relationship allows us to move to the top and final pulley. We combine the kinetic and free body 
diagrams to produce 
 

 (𝐽( + 𝐽01)θ̈(/ = −𝑏232θ̇(/ − 𝑟(/Δ𝑇!#*+,, (8) 

 
relating the movement of the pulley and leadscrew to the tension in the second belt and the friction of the 
bearing.  
 

Figure 5: Kinetic and free body diagrams of pulley 3 
 



With the pulley system fully modeled, we must relate the angular displacement of the pulley to the linear 
displacement of the crane. To do this we take our system to be the crane as seen in figure 5.  

 
The crane is driven by a lead screw connected to pulley 3 and its displacement is a simple ratio relative to 
the angular displacement. From this assertion we produced  
 

 𝑥4 = 𝐾(,θ(/. (9) 

 
Next, we connect the kinetic and free body diagrams of the pendulum and crane. We assume that the 
mass of the crane is negligible relative to that of the pendulum and combine the systems together. This 
equation relates the angular momentum of the pendulum to the moment exerted on the pendulum by 
gravity.  
 

 𝐽5θ̈( +𝑚5𝑦̈5𝐿5 sin(θ() + 𝑚5𝑥̈5𝐿5 cos(θ() = −𝑚5𝑔𝐿5 sin(θ() (10) 

 
In the x-direction, the pendulum’s acceleration is composed of an angular acceleration term, an angular 
velocity term and the acceleration of the crane. This is represented by 
 

 𝑥̈5 = 𝑥̈4 + θ̈(𝐿5 cos(θ() − θ̇(
,𝐿5 sin(θ(). (11) 

 
We then find the vertical acceleration of the pendulum by applying conservation of linear momentum 
yielding,  

Figure 6: Modeling the crane and load 
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 𝑦̈5 = θ̈(𝐿5 sin(θ() + θ̇(
,𝐿5 cos(θ(). (12) 

 
To find the angular acceleration of the pendulum, we apply conservation of angular momentum to the 
pendulum system, which gives us  
 

 𝜃̈( = −
𝐿5𝑚5Acos(θ() 𝐾(,θ(/_667+ + sin(θ() 𝑔B

𝐿5,𝑚5 + 𝐽5
. (13) 

 
To find the angular displacement of the top pulley we apply conservation of angular momentum to the 
system which yields 

 

 𝜃̈-. =
/𝑖𝑐 𝐾'𝑟-/_+𝑟-. − 𝑏121𝑟-+𝑟-/_/θ̇-.6𝑟-+𝑟-/_/

𝐽34𝑟-/_+/ 𝑟-./ + 𝐽-𝑟-+/ 𝑟-/_// + 𝐽-𝑟-+/ 𝑟-./ + 𝐽-𝑟-/_+/ 𝑟-./
. (14) 

 
Finally, we find the current entering the system by applying Kirchhoff’s current law to get,  

 

 
𝑑𝑖
𝑑𝑡 = −

𝑅𝑖 𝑟-+𝑟-/_/ +𝐾&𝑟-/_+𝑟-.θ̇-. − 𝑒!𝑟-+𝑟-/_/
𝑟-+𝑟-/_/𝐿𝑖

. (15) 

 

Linear Model for Design  
We take the Laplace transform of equations 1-15 from the modeling section. We also apply the small 
angle approximation to the equations in order to eliminate non-linearities within the time-domain model. 
The assumptions for small angle approximation are as follows,  
 

 𝜃̇-
/ = 0, (16) 

 cosθ- = 1, (17) 

 sinθ- = θ-. (18) 

 
We apply the small angle approximation to equation 10 from the modeling section yielding,  
 

 𝑠/ E/𝐿,/𝑚, + 𝐽,6θ- + 𝐿,𝑚,𝑥5F = −𝑚,𝑔𝐿,θ-. (19) 

 
We also apply the small angle approximation to the s-domain version of equation 11 and find,  
 

 𝑥,𝑠/ = 𝑠/𝐿,θ- + 𝑠/𝑥5. (21) 

 



Finally, the small angle approximation is applied to equation 12 in the s-domain yielding  
 

 𝑦,𝑠/ = θ-/𝑠/𝐿, . (22) 

 

Parameter Estimation 
In order to find the parameters of the DC motor, we perform some tests. We use an LCR meter on the DC 
motor to find 
 

 𝐿6 = 1.015	mH, (23) 

 𝑅 = 1.9			Ω. (24) 

 
We know the gear ratio of the gear-motor, which allows us to find the torque at the output shaft 

 

 𝑇1 = 32	𝑇7. (25) 

 
We use a dynamometer to measure current and shaft torque at different values. Using this information, 
we used the slope of the trendline to give us 
 

 𝐾' = 2.63 × 108/	Nm/A (26) 

 𝐾9 = 2.63 × 108/	V/(r s⁄ ) (27) 

 
In order to determine the different parameters of our system, we use a combination of a ruler, dial 
caliper, and a mass balance to measure the parameters. A table with these measured values as well as 
calculated mass moments of inertia is shown below. The mass moment of inertia for the DC motor (JDC) 
was estimated using spec sheets of similar sized motors.  
 
 
 
 
 
 
 
 
 
 
 



 

Measurement Symbol Value Units 
Mass moment of inertia of individual pulley Jp 0.0000812 Nm/(rad/s2) 
Diameter of small pulley r2_1,r3 0.0154432 m 
Diameter of large pulley r1,r2_2 0.0400685 m 
Mass of load mw 1.017 kg 
Mass moment of inertia of load Jw 0.323955553 Nm/(rad/s2) 
Length from crane to load center Lw 0.504785 m 
Mass of crane mc 0.583 kg 
Coefficient of pitch of ball screw KP2 0.0012758 m/rad 
System dampening coefficient  bsys 0.00065 Nm/(rad/s) 
Mass moment of inertia of the DC motor JDC 1.4 ∙ 1089 Nm/(rad/s2) 
Motor inductance Lc 1.015 mH 
Motor resistance R 1.9	 ohms 
Proportional gain from motor input current 
to motor torque. KT 2.63 ∙ 108, Nm/A 
Proportional gain from motor angular 
velocity to back emf. KV 2.63 ∙ 108, V/(rad/s) 

 

Results and Discussion  
Using the set of linear equations in the s-domain, we solve for the transfer function of the top pulley with 
the input voltage 𝑒! as,  
 

 
θ-.
𝑒!

=
𝑟-+/𝐾'𝑟-./

(𝐽-𝐿6𝑟-+: + 𝐽-𝐿6𝑟-+/ 𝑟-./ )𝑠. + (𝑅𝐽-𝑟-+: + 𝑅𝐽-𝑟-+/ 𝑟-./ )𝑠/ + 𝑅𝑏121𝑟-+: 𝑠
. (28) 

 
The transfer function for the angular displacement of the pendulum over the input voltage can be found 
as,  
 

 

θ&
𝑒'
= −(𝑠𝐾&(𝐿)𝑚)𝐾*𝑟&+( )/(𝐽&𝐿,(𝑟&-( + 𝑟&+()/𝐿)(𝑚) + 𝐽)0𝑠.

+ 𝐽&𝑅 2/𝐿)(𝑚) + 𝐽)0𝑟&-( + 𝑟&+(𝐽)3 𝑠+

+ 𝑅𝑟&-( 𝑏/0//𝐿)(𝑚) + 𝐽)0𝑠(

+ 𝑅𝑔𝐽&𝐿)𝑚)(𝑟&-( + 𝑟&+()𝑠 + 𝑅𝑔𝐿)𝑏/0/𝑚)𝑟&-( ). 

(29) 

 
We find the transfer function of the pendulum’s angular position over the input voltage to be,  
 

 
θ-
𝑒!
=

𝐾-/𝑟-+/ 𝐾'𝑟-./

(𝐿𝐽-𝑟-+: + 𝐿𝐽-𝑟-+/ 𝑟-./ )𝑠. + (𝑅𝐽-𝑟-+: + 𝑅𝐽-𝑟-+/ 𝑟-./ )𝑠/ + 𝑅𝑏121𝑟-+: 𝑠
. (30) 

 
Finally, we solve for the transfer function of the crane’s horizontal position x over input voltage to be,  

Table 1- Recorded Parameters 



 

 

x,
𝑒!
= ((𝑔𝐿,𝑚, + 𝑠/𝐽,)𝐾-/𝐾'𝑟-./ )

/(𝑠 E𝐽-𝐿6(𝑟-+/ + 𝑟-./)/𝐿,/𝑚, + 𝐽,6𝑠:

+ 𝐽-𝑅 E/𝐿,/𝑚, + 𝐽,6𝑟-+/ + 𝑟-./𝐽,F 𝑠.

+ 𝑅𝑟-+/ 𝑏121/𝐿,/𝑚, + 𝐽,6𝑠/ + 𝑅𝑔𝐽-𝐿,𝑚,(𝑟-+/ + 𝑟-./)𝑠
+ 𝑅𝑔𝐿,𝑏121𝑚,𝑟-+/ F). 

(31) 

 
We calculated the poles of the transfer function relating horizontal position of the load to the input 
voltage, equation 19, using our measured and estimated parameters. We found the dominant pole to be 
the complex number with a real part of -0.0337 and an imaginary part of 2.95. Using this pole, we can find 
the settling time of the 188.8 seconds, a peak time 1.06 seconds, and an overshoot of 96.5%. This shows 
that the current parameters of the system are not efficient do not allow for efficient movement of the cart 
with a certain input voltage. However, this can be improved with modifying the physical parameters that 
contribute to the denominator of equation 19. To improve this efficiency, we would need to manipulate 
these physical parameters to find a dominant pole with a larger real part. 
 
 

Description  Variable Value 
Dominant pole s1,2 −0.0337 ± 2.95	𝑗 
Settling Time ts 188.8 s 
Peak overshoot Mp 96.5% 
Time to peak tp 1.06 s 

 
When we run the simulation, we would expect the simulation to closely match experimental results. For 
example, if we were to plot the simulated angular velocity of the top pulley over time, we would expect 
the graph to quickly accelerate to a constant value when voltage input is applied. When we performed 
the experimental test to determine the angular velocity of the top pulley, the values for the 12V and 18V 
inputs were 330 rpm and 536 rpm, respectively. The resulting angular velocities over time for the model 
simulation are plotted below.  

Table 2 - Model Pole Information 



 

 
The constant angular acceleration values of the top pulley for the 12V and 18V inputs are 358 rpm and 
536 rpm, respectively. These values match the experimental values closely which gives us confidence that 
our model accurately predicts the behavior of the physical system.  
 
When we run the physical system and monitor the swing of the pendulum and load, we notice that as the 
crane reaches the end of the track it is on and begins to move in the other direction, the load swings 
significantly more than it did before changing directions. The sudden change in momentum of the crane 
in one direction to the other direction creates this sporadic swing in the load. We would expect a similar 
phenomenon to occur in our model simulation. The plot below shows the vertical position vs. the 
horizontal position of the load during the simulation. The blue line on the plot indicates the vertical 
position of the load on the way down the track while the red line indicates the vertical position of the 
load on the way back to the beginning after reaching the end of the track. 
 

Figure 7: Simulation results for angular 
velocity of top pulley vs. time with 12V 
input 

Figure 8: Simulation results for angular 
velocity of top pulley vs. time with 18V 
input 
 



 
 
 
 
The plot of the simulated vertical position of the load tells us that there was not very much vertical 
movement on the way down the track, but as the crane reached the end and began moving back towards 
the beginning, there was more vertical movement in the load. This is shown by the taller peaks in the red 
line in comparison to the blue line. This indicates that the load reached greater heights on the trip back to 
the beginning than it did on the way towards the end of the track.  
 
When running the physical system, we see that the angular velocity of the top pulley spins the lead screw 
and moves the crane. We know that the top pulley spins at a constant rate after quickly accelerating to 
this constant rate. As the crane movement is dependent on the angular velocity of the top pulley, we 
would expect the crane to move at a constant linear velocity. In order to check that our model correctly 
predicts the movement of the crane, we simulated the model and plotted the horizontal displacement of 
the crane over time below.  
 
 

Figure 9: Simulation results for vertical position of load 
vs. horizontal position of the load 
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-18V (blue) 



 
 
 
 
 
As we would expect, our model simulation of the horizontal displacement of the crane over time 
increases as it moves outwards away from the starting position and decreases as it moves back towards 
the starting position. The rate at which the crane moves is constant as well which is what we would 
expect because the crane’s movement is reliant on the constant angular velocity of the top pulley.  
 
Another aspect of the physical system we would expect is that the input voltage would produce a certain 
constant angular velocity of the top pulley in the system. We would expect to see different angular 
velocities for different input voltages. When we run the model simulation and plot the angular velocity of 
the top pulley for 12 seconds, we obtain the graph shown below.  

Figure 10: Simulation results for horizontal 
displacement of the crane vs. time 



 
 
 
The graph shows that when a positive 18V input voltage is applied at around 2 seconds, the angular 
velocity of the top pulley sharply increases to a constant value of 536 rpm. This value matches the value 
we determined earlier for an 18V input. Moreover, when the input voltage is switched to negative 18V at 
6 seconds, the angular velocity quickly changes to -536 rpm. This is what we would expect to happen 
since the magnitude of the input voltage is the same, but a negative voltage would change the direction of 
rotation of the top pulley.  

Conclusion  
The model created can accurately predict the behavior of a gantry crane system. In this paper we created 
a transfer function to model the behavior of a crane and load system. We achieved this by modeling the 
individual components of the system and creating a transfer function relating the voltage input to the 
angular displacement of the pendulum over time. Our model accuracy by comparing the angular velocity 
of the top pulley over time with the input voltage. This produced results of 358 RPM at 12 volts and 536 
RPM at 18 volts. These values matched the experimentally determined values of 330 RPM at 12 volts and 
536 RPM at 18 volts. We also measured linear displacement of the crane, and the model accurately 
described the experimental behavior of the system. The plot of crane position also matched our prediction 
of how a crane would behave. The results of the simulation align closely with the experimentally 
determined data. Our model may be used to create a control circuit to adjust the behavior of the 
suspended load. 
 
 
 
 
 

Figure 11: Simulation results for angular velocity of 
top pulley based on input voltage 


